

PRZENOŚNY BEZPRZEWODOWY SYSTEM DIAGNOSTYKI MASZYN

wersja 1.5.8.X

1. WAŻNE INFORMACJE DLA UŻYTKOWNIKA

Symbole bezpieczeństwa używane w niniejszej instrukcji:

Uwaga! Aby bezpiecznie posługiwać się przyrządem należy przeczytać odpowiednie uwagi i zalecenia zawarte w instrukcji.

Uwaga! Ryzyko porażenia prądem elektrycznym.

Uwaga! Promieniowanie laserowe. Nie wpatrywać się w wiązkę! Nie spoglądać w wiązkę przez urządzenia optyczne. Nie kierować wiązki lasera bezpośrednio na inne osoby. URZĄDZENIE LASEROWE KLASY 2

Urządzenie pomiarowe WiViD zostało zaprojektowane i wykonane zgodnie z przepisami w zakresie bezpieczeństwa. Niemniej jego bezawaryjne działanie i niezawodność podczas użytkowania mogą zostać zapewnione wyłącznie poprzez stosowanie się do ogólnych zasad bezpieczeństwa oraz szczegółowych wskazówek dotyczących bezpieczeństwa zawartych w niniejszej instrukcji.

Alitec nie ponosi w żadnym przypadku odpowiedzialności za jakiekolwiek szkody w szczególności: bezpośrednie, pośrednie lub następcze, w tym utratę zysków, poniesienie dodatkowych kosztów, niemożność korzystania z produktu, będące wynikiem funkcjonowania lub awarii urządzenia, nawet w przypadku, gdy informacja o możliwości ich wystąpienia została przekazana. Powielanie zawartości niniejszej instrukcji, w całości lub w części, bez pisemnego zezwolenia Alitec jest zabronione.

Używanie urządzenia w sposób inny niż zgodny z przeznaczeniem oraz opisany w instrukcji obsługi może stanowić zagrożenie lub prowadzić do jego uszkodzenia. Przed przystąpieniem do przeprowadzenia pomiarów należy uważnie przeczytać instrukcję obsługi.

Użytkowanie w warunkach środowiskowych niezgodnych ze specyfikacją może prowadzić do obniżenia poziomu bezpieczeństwa i pogorszenia parametrów użytkowych. W szczególności należy zwrócić uwagę na możliwość kondensacji pary wodnej w przypadku przeniesienia urządzenia z chłodnego do ciepłego środowiska pracy.

Jednym z zastosowań urządzenia jest pomiar drgań maszyn i urządzeń. W przypadku pomiaru parametrów urządzeń zasilanych napięciem wyższym niż 60 VDC, 30 VAC_{rms} lub posiadających części ruchome należy zachować szczególną ostrożność.

Jeśli urządzenie uległo uszkodzeniu, działa w sposób niezgodny z instrukcją obsługi lub przez dłuższy okres czasu przebywało w warunkach środowiskowych innych niż wyspecyfikowane, należy bezwzględnie zaprzestać jego użytkowania. Ponowne użycie jest możliwe po przeprowadzeniu prac serwisowych przez producenta.

Czujnik temperatury jest elementem szczególnie wrażliwym. W czasie korzystania z urządzenia należy unikać jego zalania i zabrudzenia.

Urządzenie należy czyścić miękką szmatką. W razie potrzeby można stosować delikatne detergenty (np. płyn do mycia naczyń).

Nie należy korzystać z urządzenia jeśli którykolwiek z jego elementów został uszkodzony. Dotyczy to w szczególności zasilacza sieciowego.

W żadnym przypadku nie należy doprowadzać do urządzenia sygnałów, których wartości (w tym wartości chwilowe) przekraczają wartości podane w jego specyfikacji. Zapis ten odnosi się także do napięcia zasilającego.

Przed podłączeniem do urządzenia przewodu sygnałowego należy upewnić się, że nie został on uszkodzony i został we właściwy sposób połączony ze źródłem sygnału.

2. OCHRONA ŚRODOWISKA

Urządzenie podlega dyrektywie WEEE 2012/19/UE w sprawie zużytego sprzętu elektrycznego i elektronicznego. Symbol przekreślonego kosza oznacza, że produkt musi być utylizowany oddzielnie i powinien być dostarczany do odpowiedniego punktu zbierającego odpady. Nie należy go wyrzucać razem z odpadami gospodarstwa domowego.

W celu uzyskania bliższych informacji, należy skontaktować się z przedstawicielem firmy lub lokalnymi władzami odpowiedzialnymi za zarządzanie odpadami.

3. SPIS TREŚCI

1.	W	AŻNE INFORMACJE DLA UŻYTKOWNIKA
2.	00	CHRONA ŚRODOWISKA5
3.	Sp	is treści7
4.	Sy	stem diagnostyki maszyn WiViD11
5.	SP	ECYFIKACJA TECHNICZNA
6.	W	ygląd paneli urządzenia WiViD14
7.	Kie	erunki pomiaru drgań15
8.	Ur	uchomienie i korzystanie z urządzenia16
9.	Ко	nfiguracja urządzeń pomiarowych w urządzeniu sterujacym17
9	.1.	Uruchomienie punktu dostępowego dla urządzeń pomiarowych17
9	.2.	Instalacja i konfiguracja urządzeń pomiarowych18
9	.3.	Definiowanie czujników pomiarowych22
10.		trasy pomiarowe i ich konfiguracja27
1	0.1.	Dodawanie zakładów/hal/maszyn28
1	0.2.	Dodawanie podzespołów29
1	0.3.	Dodawanie punktów pomiarowych30
11.		Analizy i zestawy analiz

11.1	•	Dodawanie pojedynczej analizy	31
11.2		Definiowanie progów alarmowych w analizach poziomów	33
11.3		Dodawanie zestawu analiz	35
12.	E	dycja elementów trasy pomiarowej	36
12.1		Kopiowanie i wklejanie elementów	36
12.2		Usuwanie elementów	37
13.	P	omiar niezależny	38
14.	P	omiary	39
14.1		Powiązanie punktów pomiarowych skierowanych z czujnikami, włączenie czujnika 3D w systemie WiViD	39
14.2		Uruchomienie pomiaru	42
14.3		Przechodzenie pomiędzy kolejnymi elementami trasy pomiarowej	43
14.1		Szybki podgląd listy analiz dla wybranego podzespołu	44
14.2		Podgląd wyników wybranej analizy w trakcie wykonywania pomiaru (on-line)	45
15.	P	rzeglądanie wyników pomiarów zapisanych w bazie danych	46
15.1		Przeglądnie wykresów typu przebieg	48
15.2		Ustawienia dla przebiegów czasowych	49
15.3		Ustawienia dla widm częstotliwościowych	50
16.	Zı	naczniki wykresu	51
17.	W	Vydzielenie fragmentu sygnału przy uzyciu kursora	52

18.	Kamera termowizyjna	53
18.1.	Wybór emisyjności badanego obiektu i zakresu wyświetlanych temperatur	54
18.2.	Dobór zakresu temperatur obrazu termicznego	55
18.3.	Wykonanie pomiaru	56
19.	Eksport wyników pomiaru do pliku	57
20.	Synchronizacja z programem mVIDIA Explorer	58
20.1.	Konfiguracja połączenia przy użyciu istniejącej sieci WiFi (zewnętrzny router)	59
20.2.	Konfiguracja połączenia przy użyciu punktu dostępowego urządzenia mobilnego	64
21.	Operacje na bazie danych	66
21.1.	Eksport bazy danych do pliku	67
21.2.	Import bazy danych z pliku	68
22.	Aktualizacja aplikacji	69

4. SYSTEM DIAGNOSTYKI MASZYN WIVID

Przenośny system diagnostyki maszyn WiViD[™] jest unikalnym rozwiązaniem, w którym rozdzielono pomiędzy dwa odrębne urządzenia funkcję pomiarową oraz funkcje przetwarzania danych, ich analizy i prezentacji.

Podstawowym elementem systemu jest bezprzewodowe, wielokanałowe urządzenie pomiarowe (rejestrator) zamknięte w odpornej na uszkodzenia, ergonomicznej obudowie. Jego unikalna głowica pomiarowa umożliwia pomiar drgań w 3 kierunkach, w bardzo szerokim paśmie częstotliwości (0.4Hz - 20kHz). Obszar zastosowań rozszerza możliwość podłączenia zewnętrznego, trójkierunkowego czujnika typu CLPS (czujnik drgań, siły, mikrofon, moduł ultradźwiękowy) oraz doprowadzenia sygnału znacznika fazy (przewodowo lub bezprzewodowo). Wszystkie pomiary realizowane są synchronicznie.

Jako jedyne na rynku przenośne urządzenie do pomiaru drgań, WiViD[™] może pełnić rolę mini kamery termowizyjnej wyświetlając obraz termiczny o rozdzielczości punktowej 16x4, w zakresie temperatur -50°C do 300°C.

Drugi element systemu stanowi smartfon lub tablet pracujący pod kontrolą systemu operacyjnego Android. Specjalizowane oprogramowanie gromadzi informację pomiarową w mobilnej bazie danych i po przetworzeniu, prezentuje na ekranie w czytelnej formie. Program integruje zestaw narzędzi do oceny stanu technicznego części składowych maszyn, takich jak łożyska, czy systemy przeniesienia napędu.

Niespotykane cechy użytkowe systemu WiViD[™] oraz praktycznie nieograniczone możliwości rozbudowy jego funkcjonalności, czynią go jedynym tego typu narzędziem dostępnym na rynku.

5. SPECYFIKACJA TECHNICZNA

Liczba kanałów pomiarowych analogowych i cyfrowych	5 z próbkowaniem jednoczesnym, wbudowany akcelerometr 3D
Typy wejścia analogowego	3 wejścia napięciowe dla czujnika zewnętrznego (Binder 420)
Konfiguracja wejścia analogowego	tryb napięciowy AC z dołączonym źródłem prądowym do zasilania czujników ICP/ IEPE (CLPS [™]) (kanał zewnętrzny)
Zakres napięć dla wejścia analogowego	\pm 2,5V (inne jako opcja)
Typ przetwornika analogowo-cyfrowego	4 przetworniki typu $\Delta\Sigma$
Rozdzielczość przetwornika analogowo-cyfrowego	24 bity
Typ wejścia cyfrowego	1 optoizolowane wejście cyfrowe dla znacznika fazy (poziom niski: <1,4V, poziom wysoki: >5V, maksymalne napięcie wejściowe 9V, inne wartości jako opcja)
Parametry wbudowanych czujników przyspieszenia	zorientowane 3D zakres przyspieszeń: ±50 g (inne jako opcja) zakres częstotliwości (-3dB): 0,4 21000 Hz zakres częstotliwości (10%): 0,8 10500 Hz tolerancja czułości: ±5% programowa kompensacja wpływu temperatury
Całkowity poziom szumów wejścia analogowego	50 μ V _{RMS} (dane dla: f _{out} = 65,536 kHz, zakres częstotliwości 25,6 kHz)
Częstotliwość próbkowania sygnału (f _s)	18 MHz
Efektywna częstotliwość próbkowania sygnału (f _{out}) (częstotliwość aktualizacji danych wyjściowych)	maksymalnie 65,536 kHz
Wbudowane filtry	dolnoprzepustowy filtr analogowy trzeciego rzędu Butterwortha, częstotliwość graniczna f3dB high = 68 kHz górnoprzepustowy filtr analogowy pierwszego rzędu, częstotliwość graniczna f3dB low = 0,5 Hz (tylko tryb AC) dolnoprzepustowy cyfrowy filtr antyaliasingowy, liniowa faza, częstotliwość graniczna regulowana automatycznie do wartości f3dB high = 0,49fout (f0,005dB high = 0,39fout, f-100dB high = 0,54fout)

Błąd wzmocnienia	±0,02 % (przy kalibracji w warunkach pomiaru)
Całkowity, maksymalny błąd pomiaru (bez / z czujnikiem)	$\pm 0,1$ % / \pm 5% zakresu pomiarowego (przy kalibracji w warunkach pomiaru)
Kalibracja	kalibracja fabryczna części referencynej toru pomiarowego oraz wbudowanych czujników wbudowany mechanizm autokalibracji wzmocnienia oraz poziomu zera
Zasilanie czujników typu CLPS [™]	2mA / 20V (inne wartości jako opcja)
Wbudowany czujnik pirometryczny	matryca 16 x 4 punkty (kąt widzenia 60° x 16,4°) zakres mierzonych temperatur: $-50+300°C$ dokładność pomiaru (0+300°C): $\pm 1°C \pm 3% T_o-T_a (T_o: temp. obiektu, T_a: temp. otoczenia)dokładność pomiaru (-500°C):\pm 3°C \pm 5% T_o-T_a (T_o: temp. obiektu, T_a: temp. otoczenia)$
Interfejs komunikacyjny	IEEE802.11b/g/n WiFi, WPA2 wyjście cyfrowe bezprzewodowe synchronizacji pomiarów (opcja)
Protokół komunikacyjny	ATC MESbus
Wbudowany znacznik laserowy	Laser o mocy 1mW; długość fali 650nm; Klasa 2
Warunki pracy	temperatura –5+60°C; wilgotność: 1090% RH
Oprogramowanie	ViMEA DAQ; ViMEA VIDIA; ViMEA DAAC/VSI opcjonalnie: API, funkcje sterujące Matlab, sterowniki dla LabView, dostosowane do aplikacji
Zasilanie	wbudowany akumulator Li-Poly 3,7V/3000mAh wraz z zintegrowaną ładowarką 5V/1A czas pracy na naładowanym do pełna akumulatorze: do 20h wbudowane mechanizmy oszczędzania energii i zabezpieczenia akumulatora przed przeciążeniem lub całkowitym rozładowaniem

Ze względu na nieustanny rozwój naszych produktów, powyższa specyfikacja może ulec zmianie bez powiadomienia.

6. WYGLĄD PANELI URZĄDZENIA WIVID

7. KIERUNKI POMIARU DRGAŃ

Urządzenie pomiarowe WiViD posiada wbudowany trójkierunkowy czujnik przyspieszenia drgań. Czujniki wewnętrzne dla kierunków X, Y, Z skojarzone są z kolejnymi kanałami pomiarowymi urządzenia.

Ze względu na różnorodne nazewnictwo, poszczególnym kierunkom przypisano dodatkowe oznaczenia literowe

- kanał 1: X, P (promieniowy), H (horizontal)
- kanał 2: Y, O (osiowy), A (axial)
- kanał 3: Z, S (styczny), V (vertical)

Układ kierunków pomiaru względem obudowy urządzenia przedstawia poniższy rysunek.

8. URUCHOMIENIE I KORZYSTANIE Z URZĄDZENIA

Przed uruchomieniem urządzenia upewnij się, że zainstalowana została antena w złączu anteny (8).

W celu włączenia urządzenia naciśnij przycisk ON/OFF (5). Dioda sygnalizatora statusu (7) zaświeci się i po chwili zacznie migać światłem zielonym, co oznacza wyszukiwanie urządzeń nadrzędnych. Po nawiązaniu połączenia dioda statusu świeci światłem ciągłym zielonym.

W przypadku wystąpienia błędu, dioda statusu STS (7) świeci światłem czerwonym.

Jeśli błąd związany z próbą nawiązania połączenia z urządzeniem sterującym powtarza się, można zrestartować urządzenie przytrzymując przycisk ON/OFF (5) do chwili, kiedy dioda STS (7) zacznie migać.

Urządzenie WiViD może być ładowane z ładowarki smartfonu CAT B15 dostarczonego wraz z urządzeniem. Do tego celu należy wykorzystać dostarczony kabel zakończony złączem Binder oraz USB A. Możliwe jest ładowanie urządzenia z komputera lub zasilacza samochodowego. W takim przypadku należy mieć jednak pewność, że zasilacz ten dostarcza napięcia +5 V ±10% i posiada odpowiednią wydajność prądową (zalecane min. 1A). Podłączenie urządzenia do napięć o innych wartościach może prowadzić do jego uszkodzenia. Proces ładowania sygnalizowany jest zapaleniem zielonej diody sygnalizatora ładowania (9). Po zakończeniu procesu ładowania sygnalizator pozostaje wyłączony.

Po zakończeniu pomiaru należy wyłączyć urządzenie naciskając jednokrotnie przycisk *ON/OFF* (5). W chwili wyłączenia urządzenia sygnalizator statusu świeci przez chwilę światłem czerwonym. W celu oszczędzania energii akumulatora urządzenie WiViD zostało wyposażone w funkcję automatycznego wyłączania, które następuje po ok. 7 minutach bezczynności systemu.

9. KONFIGURACJA URZĄDZEŃ POMIAROWYCH W URZĄDZENIU STERUJACYM

9.1. Uruchomienie punktu dostępowego dla urządzeń pomiarowych

Punkt dostępowy dla urządzeń pomiarowych (nazwa sieci SSID: *WiViD*) może zostać uruchomiony przy włączaniu aplikacji lub podczas próby wykrycia dostępnych urządzeń pomiarowych.

Uruchomienie punktu dostępowego wiąże się z zerwaniem połączenia z siecią Wi-Fi i zamknięciem wymiany danych przez sieć GSM.

W przypadku problemów z komunikacją niekiedy wymagane jest zresetowanie urządzenia. W tym celu wciśnij i przytrzymaj przycisk *ON/OFF* tak długo, aż dioda sygnalizacyjna *STS* zacznie szybko migać. Wówczas zwolnij przycisk i włącz ponownie urządzenie.

Po zainstalowaniu oprogramowania na urządzeniu przenośnym konieczne jest zarejestrowanie w nim urządzenia pomiarowego (patrz rozdział 9.2). Informacje o zarejestrowanych urządzeniach pomiarowych przechowywane są w bazie danych programu mVIDIA.

9.2. Instalacja i konfiguracja urządzeń pomiarowych

🛲 mVIDIA	()
MENU	USTAWIENIA
Urządzenia pomiarow	re
Czujniki	
Baza danych	
Synchronizacja	
Punkt dostępowy	

W głównym oknie aplikacji przejdź do zakładki **USTAWIENIA.**

mvidia	()
MENU	USTAWIENIA
Urządzenia pomiarow	we
Czujniki	
Baza danych	
Synchronizacja	
Punkt dostępowy	

Z dostępnej listy wybierz opcję **Urządzenia pomiarowe**.

Ро podłączeniu się urządzenia pomiarowego do sieci (dioda statusu (7) świeci kolorem zielonym) wybierz przycisk Wykryj urządzenia pomiarowe 🖸 \mathfrak{S} **Przycisk** należy nacisnąć każdorazowo w sytuacji zerwania połączenia pomiędzy urządzeniem WiViD a urządzeniem przenośnym.

V Wybrane: 1	Û
WiViD 60010006 NOWY	

Jeśli urządzenie zalogowało się prawidłowo i jest wspierane przez oprogramowanie, na liście pojawi się jego nazwa z numerem seryjnym oraz informacją **NOWY**.

Nazwy i numery seryjne urządzeń pomiarowych aktualnie podłączonych do punktu dostępowego urządzenia przenośnego wyświetlane są pogrubioną czcionką.

Wskazanie nazwy urządzenia powoduje wyświetlenie szczegółowych informacji dotyczących jego parametrów.

W zakładce SZCZEGÓŁY przełącznikiem Kanał 3D możesz zdecydować czy wewnętrzny czujnik urządzenia WiViD ma być wykorzystany jako trójosiowy (3D) czy jednoosiowy (1D) - patrz rozdział 14.1.

SZCZEGÓŁY	BATERIA	KANAŁY POMIAROW
(100%	
Pojemność cał	kowita [mAh]:	
3037.2668		
Pozostała poje	mność [mAh]:	
3037.2668		
Napięcie [V]:		
4.19192		
Temperatura [°	C] :	
36.125		

Zakładka **BATERIA** zawiera informacje dotyczące stanu naładowania oraz parametrów akumulatora urządzenia pomiarowego.

With With	ządzenie pomiar vid 60010006 NOWY	оже сzujniki
:GÓŁY	BATERIA	KANAŁY POMIAROWE
	Kanał	1
Czujnik: v	wewnętrzny	
Zakres:	[-2.5, 2.5]	4
	Kanał	2
Czujnik: v	wewnętrzny	
Zakres:	[-2.5, 2.5]	4
	Kanał	3
Czujnik: v	wewnętrzny	
Zakres:	[-2.5, 2.5]	
	Kanał	4
Czujnik:	Brak	4
Zakres:	[-2.5, 2.5]	4
	Kanał	5
Czujnik:	Brak	4
Zakres:	[0.0, 10.0]	4
		_

Zakładka **Kanały pomiarowe** zawiera informacje dotyczące konfiguracji kanałów pomiarowych oraz podłaczonych do nich czujników.

Każde urządzenie WiViD posiada wbudowany czujnik mierzący drgania w 3 kierunkach (widziany jako 3 odrębne czujniki). Informacja o jego typie oraz parametrach przesyłana jest do programu w sposób automatyczny.

NVDIA V	Jrządzenie pomiarow vivid 60010006 NOWY	ссијики
GÓŁY	BATERIA	KANAŁY POMIAROWE
	Kanał 1	
Czujnik:	wewnętrzny	
Zakres:	[-2.5, 2.5]	
	Kanal 2	
Czujnik:	Brak	
Zakres:	AC244 22412	4
	AC244 23412	
Czujnik:	AC244 23413	
Zakres:		4
	AC244 23414	
Czujnik:	Brak	
Zakres:	[-2.5, 2.5]	4
	Kanał 5	
Czujnik:	Brak	4
Zakres:	[0.0, 10.0]	
		-

Jeśli w bazie danych zostały zdefiniowane czujniki (patrz rozdział 8.3), możesz przypisać je do wybranego, zewnętrznego kanału pomiarowego.

Przypisanie i konfigurację kanałów pomiarowych możesz zmienić każdorazowo przed rozpoczęciem pomiaru. Program zapamiętuje ostatnie ustawienia.

Wivit	adzenie pomia	rowe	CZUJNIK
:GÓŁY	BATERIA	KANAŁ POMIAR	/ ROWE
	Kana	ł 1	
Czujnik: we	wnętrzny		
Zakres: [-	2.5, 2.5]		
	Kana	ł 2	
Czujnik: we	wnętrzny		
Zakres: [-	2.5, 2.5]		
	Kana	ł 3	
Czujnik: we	wnętrzny		
Zakres: [-	2.5, 2.5]		
	Kana	ł 4	
Czujnik: B	rak		
Zakres: [-	2.5, 2.5]		
	Kana	ł 5	
Czujnik: B	rak		
Zakres: [0	.0, 10.0]		

Jeżeli czujniki, które Cię interesują nie zostały jeszcze zdefiniowane, nie musisz wracać do menu głównego. Listę czujników (patrz rozdział 9.3) możesz otworzyć naciskając przycisk **CZUJNIKI**.

Ustawienia Urządzenia pomiarowe	S
WiViD 60010006	

Naciskając sprzętowy przycisk **cofnij** wrócisz do poprzedniego poziomu menu programu mVIDIA.

Po przytrzymaniu elementu dowolnej listy przez okres 2 sekund, program przełącza się w tryb edycji (patrz rozdział 12).

W przypadku listy urządzeń, masz możliwość usunięcia wybranych pozycji.

Z trybu edycji wyjdziesz wybierając przycisk ✓ lub ∽.

9.3. Definiowanie czujników pomiarowych

- mVIDIA	(j)
MENU	USTAWIENIA
Urządzenia pomiarow	/e
Czujniki	
Baza danych	
Synchronizacja	
Punkt dostępowy	

W przypadku korzystania z zewnętrznych czujników musisz je dodać do bazy danych programu mVIDIA. Raz dodane czujniki zostają zapamiętane. Przed pomiarem będzie je można przypisać jako źródło sygnału dla wybranego kanału pomiarowego. Etykiety pól obowiązkowych do wypełnienia wyróżnione są czcionką pogrubioną. W celu dodania czujników, w głównym oknie aplikacji przejdź do zakładki USTAWIENIA i wybierz z listy pozycję Czujniki.

Czujniki wbudowane w urządzenie pomiarowe systemu WiViD identyfikują się w sposób automatyczny. Są one powiązane z jego kolejnymi kanałami wewnętrznymi od 1 do 3. Korzystanie z czujników wewnętrznych nie wymaga ich uprzedniego zdefiniowania.

Nowy czujnik możesz dodać wybierając przycisk **Dodaj**

Dodaj czujnik	
Nazwa:	
M AC115X	
ZaProducent:	
6 CTC	
5 Numer seryjny:	
Za Typ:	
6 CLPS 4mA 20V	
	Ψ
q ¹ w ² e ³ r ⁴ t ⁵ y ⁶ u ⁷ i ⁸ o ⁹	p
asdfghjkl	
☆ z x c v b n m	×
?123 , Da	lej

Do kolejnych pól możesz przechodzić przyciskiem **Dalej** lub wskazując je. Klawiaturę programową możesz wyłączyć przyciskiem sprzętowym **COFNIJ**

W polach tekstowych możesz używać polskich liter, cyfr oraz znaków specjalnych. Nie używaj liter używanych w innych krajach - może to spowodować zawieszenie programu.

Dodając czujnik, musisz określić typ kanału pomiarowego do którego może zostać on podłączony.

Upewnij się, że urządzenie pomiarowe może współpracować z wybranym przez Ciebie typem czujnika. W celu ochrony przed uszkodzeniem program weryfikuje zgodność typów czujnika i kanału pomiarowego. Typ kanału określony jest budową urządzenia pomiarowego. Alitec oferuje urządzenia współpracujące z określonym typem czujników (np. CLPS lub Pt100), ale również takie, w których konfiguracja torów sygnałowych może być zmieniana programowo. Określenie typu kanału, z którym współpracuje czujnik na etapie jego definiowania pozwala uniknąć jego uszkodzenia lub wykonania pomiaru w sposób błędny.

Jeżeli urządzenie pomiarowe obsługuje kilka typów czujników, przełączenie do trybu pracy zgodnego z zadeklarowanym czujnikiem nastąpi automatycznie.

Jeśli czujnik danego typu nie jest obsługiwany, nie pojawi się on na liście czujników możliwych do podłączenia do wybranego kanału podczas konfiguracji pomiaru (patrz rozdział 14.1).

Dla typowych akcelerometrów piezoelektrycznych typu CLPS, wybierz opcję CLPS 4mA 20V.

Jeśli nie masz pewności, który typ kanału pasuje do czujnika, którego zamierzasz użyć, skontaktuj się z nami.

TYP KANAŁU POMIAROWEGO	OPIS	RODZAJ CZUJNIKÓW
CLPS 4mA 20V	wejście napięciowe z dołączonym źródłem prądowym 4 mA, zasilanym z napięcia 20 V;	czujniki zasilane ze źródła prądowego, np. akcelerometry piezoelektryczne lub mikrofony CLPS, IEPE [*] , ICP [*] ([*] nazwy użyte jedynie w celach informacyjnych, są zastrzeżone i chronione prawnie przez ich właścicieli)
CLPS 4mA 12V	wejście napięciowe z dołączonym źródłem prądowym 4 mA, zasilanym z napięcia 12 V;	czujniki zasilane ze źródła prądowego, np. akcelerometry piezo-elektryczne JAKE
Cyfrowy	wejście napięciowe przystosowane do współpracy z sygnałami cyfrowymi, w zależności od urządzenia może być wyposażone w izolację galwaniczną; parametry określone w specyfikacji technicznej urządzenia;	czujniki prędkości obrotowej (tachografy), czujniki stanu procesu (np. włączony/wyłączony)
AC	wejście z filtracją składowej stałej sygnału; parametry określone w specyfikacji technicznej urządzenia;	dowolny czujnik z wyjściem napięciowym AC, najczęściej w paśmie częstotliwości od 0,5 Hz
DC	wejście uwzględniające składową stałą sygnału; możliwość skorygowania wskazań (np. zerowanie) poprzez wpisanie wartości w polu Kompensacja; parametry określone w specyfikacji technicznej urządzenia;	dowolny czujnik z wyjściem napięciowym, w tym czujniki mierzące sygnały wolnozmienne; należy zwrócić uwagę na zakres mierzonych napięć urządzenia pomiarowego
DC PT100 3W	wejście przystosowane do współpracy z czujnikami temperatury typu Pt100; możliwość skorygowania wskazań (np. zerowanie) poprzez wpisanie wartości w polu Kompensacja;	czujniki Pt10, Pt100, Pt1000

Dla definiowanego czujnika określ wielkość fizyczną, którą mierzy. Bezpośrednio zdefiniowane zostały wielkości związane z pomiarem drgań (ze względu na możliwość przeliczania pomiędzy wielkościami fizycznymi). W przypadku podłączenia czujnika mierzącego inną wielkość fizyczną (np. temperatura), wybierz opcję **Inna**.

Dodaj czujnik	-
Nazwa:	
TY_AC115X	
ZaProducent:	
6 CTC	
5-Numer seryjny: Ty	
Za Typ:	
6 CLPS 4mA 20V	
52Jednostka:	
Cz Przyspieszenie	
Za Jednostka:	
6(mV/g	
12 Tyl mV/g Cz	
za mV / m/s² ac	
Ctc Anuluj OK	

Dla definiowanego czujnika określ jego czułość, uwzględniając mierzoną wielkość oraz jej jednostkę.

Dla czujnika dokonującego pomiaru Innej wielkości fizycznej, dostępna jest jednostka czułości *mV/unit*, gdzie unit oznacza jednostkę mierzonej wielkości (np. °C). W tej jednostce (bez dodatkowych przeliczeń) będą wyświetlane wyniki pomiarów.

ac244 ctc 1129 Typ: CLPS 4mA 20V Czułość: 99 08 mV/g Zakres częstotliwości [Hz]: 0. ac244	5 — 2000	0.0	
ac244			
ctc 1130 Typ: CLPS 4mA 20V Czułość: 102.78 mV/g Zakres częstotliwości [Hz]: 0.	5 — 2000	00.0	

Po przytrzymaniu wybranej pozycji na liście czujników przez okres 2 sekund program przełącza się w tryb edycji (patrz rozdział 12).

Wybrany czujnik możesz usunąć 🗐, przeprowadzić edycję jego parametrów 🌌 lub skopiować 🗊 dodając nowy czujnik tego samego typu.

Z trybu edycji wyjdziesz wybierając przycisk

10. TRASY POMIAROWE I ICH KONFIGURACJA

Korzystając z oprogramowania mVIDIA możesz wybrać jeden z dwóch trybów pracy. Pierwszy: **Trasa pomiarowa**, pozwala gromadzić dane pomiarowe oraz wyniki analiz w bazie danych w sposób uporządkowany, w strukturze postaci:

Pomiary i analizy wykonywane są jednocześnie we wszystkich punktach pomiarowych związanych z danym podzespołem. Oznacza to, że możesz zdefiniować maksymalnie tyle punktów pomiarowych, ile kanałów posiada Twoje urządzenie pomiarowe.

Jeśli ze względu na brak odpowiedniej liczby kanałów potrzebujesz na jednym podzespole wykonać pomiary kolejno w kilku punktach (np. godzina 12, 3, 6), musisz zdefiniować kilka odrębnych podzespołów.

Przechodzenie pomiędzy kolejnymi podzespołami, kolejnych maszyn w trasie pomiarowej odbywa się jednym przyciskiem.

Drugi: **Pomiar niezależny**, umożliwia zdefiniowanie podzespołów, bez przypisywania ich do konkretnych zakładów, hal czy maszyn. Także w tym przypadku dane pomiarowe i wyniki analiz trafiają do bazy danych. Obsługa obu trybów jest analogiczna.

mVIDIA	(i)
MENU	USTAWIENIA
Trasa pomiarowa	
Pomiar niezależny	
Detektor nieszczel	ności
Kamera termowizy	ina

10.1. Dodawanie zakładów/hal/maszyn

Trasa pomiarowa << Zakład >>	4 0 0
Zaklad 1 ul. Produkcyjna 4a	
Zaklad 2 ul. Przemyslowa 12	
Zaklad 3 ul. Przemysłowa 14	
Dodaj	
POMIAR	+

W celu dodania nowego zakładu/hali/maszyny wybierz przycisk Dodaj

Za ul. I	Dodaj zakła	ıd		
ZaNazwa:				
	Zakład			
Za	Opis:			
	Anuluj		ОК	
				_
q	wert	⁵ y ⁶ u	⁷ i o	P
	a s d f	g h	j k l	
4	Ż z x c	v b	n m 🖣	×
?1	123 V	olski	. Da	lej

Wypełnij widoczne pola i zatwierdź je naciskając OK. Etykiety pól obowiązkowych do wypełnienia wyróżnione są pogrubioną czcionką.

Pola nazwa zakładu/hali/maszyny muszą być unikalne dla aktualnie wybranego elementu trasy pomiarowej.

10.2. Dodawanie podzespołów

ev/DIA	Trasa pomiarowa nia\kompresor 830-11/270 2\<< Podze	espół >>
łoży	vsko 1	
Punkt	y pomiarowe: 2 (w tym 3D: 1)	
	Dodaj	
	POMIAR	+

W celu dodania nowego podzespołu, na którym będą wykonywane pomiary, wybierz przycisk **Dodaj**

-	Trasa pomiarowa Wydzial obrabiarek	<th>>></th>	>>	
ŁC stro	Dodaj podze	espół		
	Nazwa:			
	Łożysko P			
Opis:				
	strona			
	Anuluj	ок		
q	wert	y u i o p	ັ	
	asdf	g h j k l		
4	z x c	v b n m 🕰	1	
?1	23 🦊 Po	olski	-	

Wypełnij widoczne pola i zatwierdź naciskając OK. Etykiety pól obowiązkowych do wypełnienia wyróżnione są pogrubioną czcionką.

10.3. Dodawanie punktów pomiarowych

Miejsce instalacji czujnika nosi nazwę **punktu pomiarowego**. Na jednym podzespole może zostać zainstalowanych wiele czujników. Program mVIDIA umożliwia dodanie:

- punktu, w którym sygnał drgań mierzony jest w jednym kierunku (Punkt 1D),
- punktu, w którym sygnał drgań mierzony jest w trzech kierunkach (Punkt 3D),
- punktu, w którym mierzona jest prędkość obrotowa (Prędkość obrotowa),
- punktu, w którym mierzony jest sygnał inny niż związany z ruchem drgającym (*Uniwersalny*).

W badaniach drgań maszyn istotny jest kierunek, w którym wykonywane są pomiary. Zależy on od budowy czujnika oraz sposobu jego instalacji. Kierunek pomiaru drgań najczęściej określa się względem osi obrotu wirnika badanej maszyny (*promieniowy, styczny, osiowy*) lub kartezjańskiego układu współrzędnych (*X, Y, Z*).

W oprogramowaniu mVIDIA pojedynczy kierunek pomiaru nosi nazwę **punktu skierowanego**. Punkt pomiarowy 3D łączy w sobie trzy odrębne punkty skierowane, w których drgania mierzone są w trzech wzajemnie prostopadłych kierunkach *X*, *Y*, *Z*. Dla punktów 1D użytkownik musi określić kierunek, uwzględniając sposób instalacji czujnika.

Przed wykonaniem pomiaru do każdego punktu skierowanego przypisywany jest kanał pomiarowy urządzenia rejestrującego sygnał podłączony do niego czujnik.

Po zatwierdzeniu operacji nie ma możliwości usunięcia punktu pomiarowego z podzespołu. Rozwiązanie takie chroni przed przypadkową utratą danych pomiarowych.

Istniejący punkt pomiarowy może zostać wyłączony w czasie wykonywania pomiaru (patrz rozdział 14.1).

W celu dodania punktów pomiarowych wybierz polecenie **Dodaj . W czasie edycji, jeśli pomiar nie został jeszcze wykonany** możesz usunąć wybrany punkt zaznaczając go i wybierając polecenie **Usuń .** Zakończ operację dodawania punktów wybierając przycisk **Zapisz**.

11. ANALIZY I ZESTAWY ANALIZ

11.1. Dodawanie pojedynczej analizy

W programie mVIDIA proces wyznaczania parametru diagnostycznego (poziom, widmo, itp.) nosi nazwę analizy.

W każdym punkcie pomiarowym możesz zdefiniować dowolną liczbę analiz. Zastosowany mechanizm wyznaczania parametrów rejestracji sygnału źródłowego gwarantuje możliwość przeprowadzenia wszystkich analiz podczas jednego pomiaru. W przeciwieństwie do tradycyjnych rozwiązań, nie musisz zatem tracić czasu oczekując na wykonanie w każdym punkcie wielu pomiarów, dla każdej analizy.

Oprogramowanie mVIDIA zapamiętuje wyniki wszystkich pomiarów. Oznacza to, że nowotworzone analizy mogą korzystać z danych historycznych. Jeśli chcesz dla danego podzespołu dodać nową analizę, obejrzysz jej wyniki także dla wcześniejszego okresu jego działania. Warunkiem koniecznym przeprowadzenia analizy jest rejestracja dostatecznie długich przebiegów, w odpowiednim paśmie częstotliwości, którego wymaga dodana analiza. Przykładowo, nie będzie możliwe późniejsze wyznaczenie analiz:

AN AL 17 A	PARAMETRY PRZEBIEGU ŹRÓDŁOWEGO		
	czas trwania [s]	częstotliwość graniczna [Hz]	
poziom sygnału: RMS, 1 Hz do 10 kHz	1	3200	
przebieg czasowy: 0,5 Hz do 10 kHz, 1 s	1	3200	
przebieg czasowy: 0,5 Hz do 1 kHz, 4 s	1	3200	
widmo: 1 Hz do 10 kHz, rozdzielczość 2 Hz	1	3200	
widmo: 1 Hz do 1 kHz, rozdzielczość 0,25 Hz	1	3200	

Niewymienione parametry mogą przyjąć dowolne wartości. Kolorem niebieskim zaznaczono parametry sprzeczne.

W przypadku planowanego późniejszego dodawania analiz rozważ dodanie przebiegu czasowego o czasie trwania 4 s, przy częstotliwości granicznej górnej 10 kHz (alternatywnie 20 kHz). Taka analiza wymusi zapisanie danych źródłowych umożliwiających zdefiniowanie dokładnych analiz najczęściej występujących uszkodzeń. Niestety dane będą zajmowały stosunkowo dużo miejsca w pamięci.

Trasa pomiarowa obrabiarek\frezarka 1\Łożysko N\<< Analiza >>		
	Dodaj	
	Dodaj zestaw	
POM	AR	+

W celu dodania nowej analizy wybierz przycisk **Dodaj H**, a następnie opcję Dodaj.

Typ poziomu:			
RMS			
Częstotliwość graniczna do	olna [Hz]:		
h.o			
Częstotliwość graniczna go	órna [Hz]:		
Wielkość:			
Przyspieszenie			
Jednostka:			
m/s²			
Użyj jednostki wyj	jściowej czuj	inika	
		Dodaj	

Wybierz typ analizy i określ jej parametry.

Niektóre pola posiadają przypisane wartości domyślne (czcionka koloru szarego). Jeśli potrzebujesz, nadpisz je (bez konieczności kasowania).

Operacje zatwierdź przyciskiem 🗹.

Jeśli w czasie wprowadzania danych klawiatura ekranowa przesłania ci widok, możesz wyłączyć ja przyciskiem 🔛 lub 🗁, a także przejść do nastepnego pola Dalej korzystając z przycisku

Część ekranu zawierającą definicję analizy można przewijać.

11.2. Definiowanie progów alarmowych w analizach poziomów

Dla wszystkich analiz typu Poziom svanału oraz Temperatura istnieje możliwość zdefiniowania poziomów kryterialnych, umożliwiających określenie technicznego stanu podzespołów badanei maszvnv. Poziomy te definiowane sa przez normy oraz producentów maszyn. Mogą także wynikać z doświadczeń związanych z eksploatacją danego urządzenia.

Program mVIDIA pozwala na zdefiniowanie maksymalnie czterech poziomów kryterialnych, oznaczonych kolorami: zielonym, żółtym, pomarańczowym oraz czerwonym

Poziom sygnału	
lyp poziomu:	
RMS	
Częstotliwość graniczna dolna [Hz]:	
Częstotliwość graniczna górna [Hz]:	
Wielkość:	
Przyspieszenie	
Jednostka:	
m/s²	
Użyj jednostki wyjściowej	czujnika
Progi alarmowe:	
Usuń	Dodaj

W celu dodania nowego kryterium oceny stanu technicznego podzespołu, po określeniu parametrów analizy, w polu **Progi alarmowe** wybierz

Przycisk **Dodaj** naciśnij tyle razy, ile poziomów kryterialnych chcesz dodać.

Uzupełnij kolejno wartości wszystkich dodanych poziomów kryterialnych.

r oziom sygnalu	
ſyp poziomu:	
RMS	
Częstotliwość graniczna dolna [Hz]:	
	<i></i>
Częstotliwość graniczna górna [Hz]:	
Vielkość:	
Przyspieszenie	
Jednostka:	
m/s²	
Ory jedioski wyjsciowej czł rogi alarnowe: 2.1	јпка
Usuń	Dodaj

W czasie definiowania analizy możesz usunąć zdefiniowane poziomy kryterialne.

Każdorazowe wybranie przycisku **Usuń** kasuje najmniej znaczący poziom.
11.3. Dodawanie zestawu analiz

Dla wybranych typów maszyn możliwe jest skorzystanie z kreatora dodającego zestaw analiz najlepiej identyfikujących ich stan techniczny.

Rodzaje analiz oraz ich parametry są zgodne wybranymi z normami opisującymi metody oceny stanu technicznego tych maszyn.

Pod nazwą każdej analizy utworzonej kreator umieszczane przez iest oznaczenie normy/przepisu, na podstawie którei została wygenerowana.

Lista typów maszyn objetych wsparciem oraz wykorzystywanych norm jest systematycznie rozwijana.

Trasa pomiarowa obrabiarek\frez	a zarka 1\Łożysko N\<< Analiza >>
	Dodaj
	Dodaj zestaw
PON	1IAR +

W celu dodania nowego zestawu analiz +. przycisk Dodai wybierz a następnie opcję Dodaj zestaw.

mvidia mVIDIA	
Maszyna:	
Dmuchawa Rootsa	
^R Dmuchawa Rootsa	
F Przekładnia	ĺ
Sprężarka śrubowa	í
Prędkość obrotowa [RPM]:	
Liczba zębów śruby ojca:	
PIERWSZY STOPIEŃ PRZEŁOŻENIA:	
Brak	
×	\checkmark

Wybierz typ maszyny i wypełnij pozostałe pola kreatora zestawu analiz.

Operacje zatwierdź przyciskiem 🗹.

12. EDYCJA ELEMENTÓW TRASY POMIAROWEJ

12.1. Kopiowanie i wklejanie elementów

Na dowolnym poziomie trasy pomiarowej uruchom tryb edycji przytrzymując nazwę wybranego elementu listy.

Możesz kopiować zarówno zakłady, hale, maszyny, jak i pojedyncze punkty pomiarowe, czy analizy.

Zaznacz elementy do skopiowania.

Możesz zaznaczyć i skopiować więcej niż jeden element listy.

Wybierz przycisk Kopiuj 🔟.

Przejdź do miejsca w trasie pomiarowej, w którym chcesz wkleić skopiowane elementy. Wybierz przycisk **Dodaj**, a następnie **Wklej**.

Kopiując elementy możesz przejść do innego Zakładu/Hali/Maszyny.

12.2. Usuwanie elementów

Na dowolnym poziomie trasy pomiarowej uruchom tryb edycji przytrzymując nazwę wybranego elementu listy. Zaznacz elementy przeznaczone do usunięcia.

Każdorazowo możesz zaznaczyć i usunąć więcej niż jeden element listy.

Wybierz przycisk **Usuń** 🛅 i zatwierdź operację.

13. POMIAR NIEZALEŻNY

W programie mVIDIA możesz wykonać pomiary podzespołu spoza trasy W **MENU** okna głównego aplikacji wybierz opcję **Pomiar niezależny**. Jest to pomiar podzespołu nieprzypisanego do trasy pomiarowej. Dalsze postępowanie jest zgodne z **Trasą pomiarową** (patrz punkty od 2.2.).

14. POMIARY

14.1. Powiązanie punktów pomiarowych skierowanych z czujnikami, włączenie czujnika 3D w systemie WiViD

Przed wykonaniem pomiaru, w każdym *skierowanym punkcie pomiarowym* badanego obiektu powinien zostać zainstalowany czujnik mierzonej wielkości:

- w punkcie typu Punkt 1D czujnik jednokierunkowy,
- w punkcie typu **Punkt 3D** czujnik trójkierunkowy (lub trzy zamocowane prostopadle względem siebie czujniki jednokierunkowe),
- w punkcie typu Prędkość obrotowa czujnik znacznika fazy (prędkości obrotowej),
- w punkcie typu Uniwersalny czujnik dowolnej wielkości fizycznej.

Po zamontowaniu czujników upewnij się, że w sposób właściwy zostały one zdefiniowane w programie mVIDIA (patrz rozdział 9.3) oraz są przypisane do odpowiednich kanałów pomiarowych urządzenia (patrz rozdział 9.2).

Podłączenie czujnika do błędnie skonfigurowanego kanału pomiarowego lub kanału nieprzystosowanego do pracy z określonym typem czujników grozi uszkodzeniem zarówno czujnika, jak i urządzenia pomiarowego.

Wykonując pomiary możesz wyświetlić konfigurację kanałów pomiarowych oraz definicje czujników nie wracając do menu głównego programu. Dla programu znajdującego się w trybie **Trasa pomiarowa** lub **Pomiar niezależny** wybierz kolejno przyciski **POMIAR** i , a następnie przejdź do zakładki **KANAŁY POMIAROWE**. W razie potrzeby wybierz przycisk **CZUJNIKI** (analogicznie jak w rozdziale 9.2 i 9.3).

Urządzenie pomiarowe WiViD 60010006 KANAŁ SZCZEGÓŁY BATERIA POMIA WiViD 60010006 Typ karty: WiViD Numer serviny: 60010006 192.168.43.195:5000 iczba kanałów: zuinik 3D zestotliwości próbkowania [Hz]: [8192, 16384, 32768, 65536]

Każde urządzenie pomiarowe WiViD posiada cztery analogowe kanały pomiarowe. Podczas dodawania urządzenia (patrz rozdział 9.2) lub po wybraniu w trybie **Trasa pomiarowa** kolejno polecenia POMIAR i , w zakładce **SZCZEGÓŁY** możesz wybrać konfigurację ich pracy:

Czujnik 3D wewnętrzny

Poszczególne akcelerometry kierunków X, Y, Z czujnika wewnętrznego podłączone są do trzech pierwszych kanałów pomiarowych: kierunek X \rightarrow Kanał 1, kierunek Y \rightarrow Kanał 2, kierunek Z \rightarrow Kanał 3. Informacja o typie czujników oraz ich parametrach przesyłana jest do programu w sposób automatyczny.

W tej konfiguracji do kanału **Kanał 4** dołączony może zostać uprzednio zdefiniowany jednoosiowy czujnik zewnętrzny typu CLPS (patrz rozdział 9.3).

Czujnik 3D zewnętrzny

Czujnik wewnętrzny wykorzystywany jest jako jednoosiowy dla kierunku **X**, podłączony do kanału **Kanał 1.** Informacja o typie czujnika oraz jego parametrach przesyłana jest do programu w sposób automatyczny.

Do pozostałych trzech kanałów (**Kanał 2** do **Kanał 4**) możesz dołączyć uprzednio zdefiniowany zewnętrzny akcelerometr trójosiowy (3D) lub trzy czujniki jednoosiowe (1D) mierzące drgania w różnych punktach maszyny.

W czasie wykonywania pierwszego pomiaru, program mVIDIA w sposób automatyczny przypisuje do poszczególnych punktów skierowanych kolejne kanały pomiarowe urządzenia <u>z przypisanymi czujnikami</u>. Przed uruchomieniem pomiaru należy zweryfikować prawidłowość tego powiązania i w razie potrzeby wprowadzić odpowiednie zmiany.

Ostatnia konfiguracja każdego urządzenia pomiarowego jest zapamiętywana. Jeżeli rozmieszczenie czujników i ich parametry nie zmieniły się, przy następnym pomiarze zmiana konfiguracji nie będzie konieczna.

PUNKT	ү роміаком Kanał 4 Brak Brak	VE
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Kanał 4 Brak Brak	
2	Brak Brak	_
⊠ ₹	Brak	
-		
	Brak	
	E r	C Brak

W celu powiązania punktów pomiarowych z kanałami dostępnego urządzenia pomiarowego przejdź do zakładki **Punkty pomiarowe**.

WVDLA	WiViD 600100	06	- <u>+</u>	S
	SZCZEGÓŁY	PUNKT	Y POMIARO	NE
godz	12 [x]	M	Brak	
godz	12 [y]	M	Brak	
godz	12 [z]	⊠	Brak	
godz	3 [x]	M	Brak	4
			Kanał 1	
			Kanał 2	
			Kanał 3	
			Kanał 4	
	ST	ART		

Jeśli to konieczne, zmień przypisanie kanałów do poszczególnych skierowanych punktów pomiarowych. Po wybraniu przycisku **E** i przejściu do zakładki **KANAŁY POMIAROWE** możesz zweryfikować poprawność powiązania czujników z kanałami pomiarowymi.

WYDIA V	ViViD 6001	0006		±÷.	S
sz	CZEGÓŁY	PU	ΝКТ	Y POMIAF	OWE
godz 12	2 [x]		M	Kanał	1
godz 12	2 [y]		M	Kanał	2
godz 12	2 [z]				
godz 3	[x]		M	Kanał	4
		START			*

Jeśli w czasie pomiaru nie chcesz rejestrować danych dla danego punktu pomiarowego, np. z powodu uszkodzenia zainstalowanego w nim czujnika, wyłącz ten punkt wskazując jego nazwę.

14.2. Uruchomienie pomiaru

Na każdym poziomie trasy pomiarowej oraz pomiaru niezależnego dostępny jest przycisk **POMIAR**. Jego wybranie powoduje wyświetlenie szczegółowych informacji o pierwszym podzespole znajdującym się na liście, począwszy od bieżącej lokalizacji (w zakładzie/hali, na maszynie).

SZUZEGU	λŁΥ	PUNKTY POMIAROWE
Lokalizacja:		
Zakład	Zakla	d 3
Hala	Spręż	arkownia
Maszyna	komp	resor 830-11/270 2
Podzespó	łłożvsk	(o 1
nformacje pon	niarowe:	
Data ostatnie pomiaru:	ego	19.08.2014 14:28:14
Częstotliwoś próbkowania	ć [Hz]:	32768.0
Liczba próbe	k:	131072.0
Czas pomiari	ן [s]:	4.0
Pomiar temp	eratury:	Nie
Obraz termov	vizyjny:	Nie
		Constant of the second s

W oknie szczegółów wybranego podzespołu wybierz przycisk **START**.

W czasie trwania pomiaru na pasku postępu możesz śledzić postęp transmisji danych pomiędzy urządzeniem pomiarowym a urządzeniem mobilnym.

Dioda statusu (7) urządzenia podczas pomiaru świeci światłem ciągłym, czerwonym.

14.3. Przechodzenie pomiędzy kolejnymi elementami trasy pomiarowej

₋okalizacja: Zakład Hala	Zaklad	
Zakład Hala	Zaklac	
Hala	~	13
	Spręza	arkownia
maszyna	kompr	esor 830-11/270 2
Podzespół	łożysk	o 2
nformacje pomi	arowe:	
Data ostatnieg pomiaru:	lo	19.08.2014 14:30:46
Częstotliwość próbkowania [Hz]:	32768.0
Liczba próbek		131072.0
Czas pomiaru	[s]:	4.0
Pomiar tempe	ratury:	Nie
Obraz termowi	izyjny:	Nie

W celu przyspieszenia procesu wykonywania pomiarów, na dolnym pasku menu znajdują się przyciski S pozwalające przechodzić do kolejnego/poprzedniego podzespołu na liście.

Zakres nawigacji uzależniony jest od aktualnie wybranego poziomu trasy pomiarowej, np. wybranie przycisku pomiar na poziomie maszyny pozwala przechodzić do kolejnych jej podzespołów, wybranie przycisku pomiar na poziomie hali pozwala przechodzić do kolejnych podzespołów kolejnych maszyn.

Po wykonaniu pomiaru na wybranym podzespole możesz przejść do kolejnego naciskając przycisk **Następny D**. Dokładne informacje dotyczące lokalizacji aktualnie badanego podzespołu przedstawione są w górnej części ekranu.

Przy pierwszej pozycji trasy pomiarowej ukrywany jest przycisk Poprzedni K. Przy ostatniej pozycji trasy pomiarowej ukrywany jest przycisk Następy

14.1. Szybki podgląd listy analiz dla wybranego podzespołu

WIDA			+++	5
SZCZEGÓ	ŁΥ	PUNK	ΤΥ ΡΟΜΙΑ	ROWE
okalizacja:				
Zakład	Zakład	przyk	ladowy	6. S.
Hala	Hala p	rzykład	lowa	
Maszvna	Maszv	na przy	vkłado	wa
Podzespó	Podzw	spół pi	zvkłac	lowv
pomiaru: Częstotliwoś próbkowania	ć lual		- 8192.0	
próbkowania	[Hz]:		8192.0	
Liczba próbe	k: . r-1.		32768.0	<u>%</u>
Czas pomiari Pomiar temp	J [S]: aratury:		4.U Tak	
Obraz termov	vizyjny:		Nie	

Wskazując część widoku opisującą aktualną pozycję w trasie pomiarowej (**Lokalizacja**) możesz włączyć podgląd listy analiz zdefiniowanych dla danego podzespołu.

W oknie podglądu nie ma możliwości dodawania nowych analiz (patrz rozdział 11).

14.2. Podgląd wyników wybranej analizy w trakcie wykonywania pomiaru (on-line)

Program mVIDIA oferuje możliwość podglądu w czasie wykonywania pomiaru wyników analizy bez ich rejestracji w bazie danych.

W celu uruchomienia podglądu wskaż wybraną analizę.

Wybierz polecenie PODGLĄD NA ŻYWO

SZCZEGÓ	LΥ	PUNH		ROWE
okalizacja:				
Zakład	Alitec			
Hala	Al. Pol	itechni	ki	
Maszyna	kompr	esor 8	30-11/	270
Podzespół	lozysk	01		
Analiza	Przebi	ea cza	sowv [m/s [:]
formacje pomi Data ostatnie pomiaru: Częstotliwość	arowe: go	07.01	.2014 22 8192.0	2:30:1
Liczba próbeł	[[]]2]. ()		8192.0	
Czas pomiaru	[s]:		1.0	

W tym trybie pracy systemu wynik analizy odświeżany jest cyklicznie w odstępach czasu określonych parametrami analizy (np. liczba prążków i rozdzielczość widma).

15. PRZEGLĄDANIE WYNIKÓW POMIARÓW ZAPISANYCH W BAZIE DANYCH

Z listy analiz zdefiniowanych dla danego podzespołu wybierz analizę, której wyniki chcesz obejrzeć.

Trasa pomiarowa gnału RMS [m/s²]\<< Dane pomiarowe >>
21.01.2014 11:46:04
17.01.2014 ^{15:46:14}
14.01.2014 ^{15:45:50}
12.01.2014 ^{15:45:01}
09.01.2014 ^{15:44:13}
07.01.2014 22:30:12
PODGLĄD NA ŻYWO WYKRES TRENDU

Spośród pomiarów dostępnych na liście, wybierz ten, którego wynik chcesz wyświetlić.

W zależności od typu analizy dane zostaną przedstawione w postaci wykresu liniowego lub kołowego.

Na wykresie kołowym kolorami zaznaczone są zakresy wyznaczone przez wartości progowe określone podczas tworzenia analizy.

15.1. Przeglądnie wykresów typu przebieg

Jednym z podstawowych wykresów jest przebieg czasowy zmian wartości wyznaczonego parametru.

Przebiegi wyświetlane są fragmentami i mogą być przewijane poprzez przeciągnięcie wykresu w odpowiednią stronę.

Dane zarejestrowane z wielu czujników w czasie jednego pomiaru wyświetlane są na jednym wykresie.

W celu wyświetlenia wyniku analizy dla innego czujnika lub kierunku pomiarowego czujnika 3D, wybierz jego nazwę z listy rozwijanej.

Wykresy możesz powiększać i pomniejszać w poziomie poprzez rozciąganie/ściskanie wykresu przy użyciu dwóch palców lub przy użyciu przycisków a oraz a. Domyślne powiększenie możesz przywrócićpo wybraniu z menu wykresu polecenia **Resetuj przybliżenie**.

15.2. Ustawienia dla przebiegów czasowych

W czasie wyświetlania przebiegu czasowego sygnału możesz zmienić jego ustawienia. W tym celu naciśnij przycisk menu wykresu .

Z menu ustawień wybierz polecenie Ustawienia wykresu.

Zmiana sposobu wyświetlania przebiegu nie wpływa na definicję analizy i po wyłączeniu podglądu wyniku nie jest zapamiętywana.

Dla zarejestrowanego przebiegu czasowego sygnału drgań możesz zmienić wyświetlaną wielkość fizyczną oraz jednostkę. Możesz również obejrzeć przebieg w oryginalnej jednostce użytego czujnika.

15.3. Ustawienia dla widm częstotliwościowych

	m/s
az	
oq	
ore	
	HAL.
500 1000 1500 2000 2500	3000

W czasie wyświetlania widma częstotliwościowego sygnału możesz zmienić jego ustawienia. W tym celu naciśnij przycisk menu wykresu

Z menu ustawień wybierz polecenie Ustawienia wykresu.

Zmiana sposobu wyświetlania przebiegu nie wpływa na definicję analizy i po wyłączeniu podglądu wyniku nie jest zapamiętywana.

Dla widma częstotliwościowego sygnału drgań możesz zmienić jednostkę częstotliwości, wyświetlaną wielkość fizyczną oraz jej jednostkę. Możesz także zmienić skalę na [dB] i obejrzeć przebieg w oryginalnej jednostce użytego czujnika.

16. ZNACZNIKI WYKRESU

Dokładne parametry danego punktu wykresu możesz określić korzystając ze znaczników.

Znacznik można umieścić na wykresie poprzez dłuższe wskazanie wybranego punktu wykresu.

W celu zmiany ustawień aktualnie wstawianego znacznika wybierz przycisk .

Ustaw	ienia znao	czników	
Kolor znaczr	iika:		
Czerwony	,		4
⁰ Typ znaczni	ka:		_
O Pojed	ynczy		
💿 Wielo	krotny		
Liczba znac:	zników:		
🗹 Znacz	niki wstęg b	ocznych	
Liczba znac:	zników wstęg b	ocznych:	A
Odstęp znac	zników wstęg l	bocznych:	
1.22070	31E-4		
	Zamknij		
	4		4

Dostępne ustawienia pozwalają na zmianę koloru, przełączenie typu znacznika między pojedynczym a wielokrotnym oraz na wyświetlenie wstęg bocznych.

Podczas analizy widma sygnału, gdy został jednocześnie przeprowadzony pomiar prędkości obrotowej, zostanie automatycznie dodany znacznik wskazujący jej częstotliwość.

17. WYDZIELENIE FRAGMENTU SYGNAŁU PRZY UZYCIU KURSORA

Z zarejestrowanego przebiegu czasowego możesz wyodrębnić jego fragment zapisując go jako nowe źródło danych dla analiz prowadzonych dla danego podzespołu maszyny.

W przeglądanym przebiegu znajdź chwilę czasu, w której zaczyna się interesujący Cię fragment i wstaw pojedynczy znacznik.

Z menu wykresu **I** wybierz polecenie **Trymer sygnału**.

Wyodrębniony przebieg czasowy stanowi źródło danych dla prowadzonych analiz. Korzystają z niego analizy, których przeprowadzenie jest możliwe dla parametrów tego przebiegu.

Z listy rozwijanej okna trymera wybierz czas trwania nowego przebiegu źródłowego.

Utworzony przebieg czasowy różni się od oryginalnego czasem rozpoczęcia pomiaru (z uwzględnieniem przesunięcia chwili początkowej) oraz czasem trwania.

18. KAMERA TERMOWIZYJNA

Urządzenie WiViD może pełnić rolę kamery termowizyjnej o rozdzielczości obrazu 16x4 punkty. Wyświetlany obraz podlega filtracji i interpolacji.

Funkcja kamery termowizyjnej przeznaczona jest do identyfikacji oraz pomiaru temperatury gorących punktów występujących na powierzchni badanych podzespołów maszyn.

Kamerę termowizyjną można wykorzystać do diagnostyki zarówno elementów mechanicznych (np. nieodpowiednie smarowanie lub uszkodzenie łożyska), jak i elektrycznych (np. wzrost rezystancji połączenia kabli elektrycznych).

W celu przejścia w tryb kamery termowizyjnej, w **MENU** okna głównego aplikacji wybierz opcję **Kamera termowizyjna**.

W przypadku konieczności pomiaru temperatury obiektu silnie refleksyjnego (powierzchnie o niskiej emisyjności, takie jak powierzchnie metaliczne, szkło) w celu zminimalizowania błędów pomiaru, w miarę możliwości należy pokryć ją czarnym matowym lakierem lub nakleić na nią czarną, matową taśmę (np. taśmę izolacyjną).

W przeciwnym przypadku istnieje ryzyko wykonania pomiaru temperatury tła – obiektu odbijającego się w obserwowanej powierzchni (np. lampa oświetleniowa, rozgrzany element innego urządzenia).

Identyfikacja gorących punktów na badanym obiekcie przy wykorzystaniu kamery termowizyjnej systemu WiViD polega na skierowaniu urządzenia pomiarowego na badany obiekt z większej odległości i zbliżaniu go w kierunku wybranego obszaru o podwyższonej temperaturze.

18.1. Wybór emisyjności badanego obiektu i zakresu wyświetlanych temperatur

W głównym oknie kamery termowizyjnej należy nacisnąć przycisk .

		9
Ustawienia		
Emisyjność:		
1.0		$\overline{\mathbf{I}}$
Zakres temperatury [°C]:	
Automatyczny		
🔘 Ręczny		
Anuluj	ОК	
ST.		- <u>1</u> -1-

Emisyjność można określić poprzez bezpośrednie wpisanie wartości lub wybranie jej listy.

Lista rodzajów powierzchni uporządkowana jest alfabetycznie. Jest to lista przewijana. Po znalezieniu na niej właściwej nazwy należy wskazać ją.

18.2. Dobór zakresu temperatur obrazu termicznego

START 🕂

W głównym oknie kamery termowizyjnej należy nacisnąć przycisk

WVDA		9
Ustawienia		
Emisyjność:		
1.0		\odot
Zakres temperatury [°C		
 Automatyczny 		
Ręczny		
0.0 -	- 100.0	
Anuluj	ок	
ST/	ART	<u>-1-</u> 1-

Zakres prezentowanych temperatur określany może być w sposób automatyczny lub ręczny.

Przy wyborze trybu ręcznego, użytkownik ma możliwość wpisania przedziału temperatur wyświetlanych na obrazie termicznym.

18.3. Wykonanie pomiaru

mVIDIA		5
	START	<u>-1-</u>

Jeśli punkt dostępowy jest aktywny i urządzenie pomiarowe jest włączone jego nazwa powinna się wyświetlić automatycznie w górnej części widoku. Jeśli się tak nie stanie, naciśnij przycisk **Odśwież połączenie** w prawym górnym rogu ekranu.

Urządzenie wyposażone iest we wskaźnik laserowy wskazujący w przybliżeniu środek obszaru obserwowanego przez kamere termowizyjną. Wskaźnik włączany jest przyciskiem Włącz wskaźnik laserowy Zmiana koloru przycisku na czerwony oznacza włączenie lasera.

	WiViD 60	010001		S
	13	87,4	°C	
		-		
10,0	57,5	105,0	152,5	200,0
		STOP		<u>+</u>

Pomiar temperatury uruchamiany jest przyciskiem **START**. Wyświetlana jest wartość średnia temperatury liczona z czterech środkowych czujników matrycy. Poniżej przedstawiona jest skala kolorów odniesiona do najniższej i najwyższej temperatury obrazu.

19. EKSPORT WYNIKÓW POMIARU DO PLIKU

V Wybrane: 1	
19.08.2014 15:27:21	
19.08.2014 ^{15:26:34}	
19.08.2014 ^{14:28:14}	
19.08.2014 ^{14:28:00}	
19.08.2014 ^{14:24:45}	
19.08.2014 ^{14:24:35}	
19.08.2014 ^{14:24:27}	
19.08.2014 ^{14:24:18}	
	ŧ

Program mVIDIA umożliwia zapisanie wyników pomiaru w pliku tekstowym, w celu dalszej obróbki i analizy.

Przejdź do wybranego podzespołu i na liście analiz wybierz tę, która Cię interesuje. Na liście pomiarów przytrzymaj datę pomiaru, którego wynik chcesz zapisać. W ten sposób uruchomisz do tryb edycji pomiarów.

🗸 🛛 Wybra	ane: 1
19.08.2014 15:27:21	
19.08.2014 15:26:34	
19.08.2014 14:28:14	
19.08.2014 14:28:00	
19.08.2014 14:24:46	
19.08.2014 14:24:35	
19.08.2014 14:24:27	
19.08.2014 14:24:18	Eksportuj do pliku
	Ĵ

Wybierz przycisk 🗎 eksportu danych do pliku.

Zdecyduj czy do pliku ma zostać zapisany wynik analizy (dla poziomu pojedyncza wartość), czy oryginalny przebieg czasowy użyty do obliczeń (w jednostkach czujnika).

W zależności od parametrów pomiaru, zapis surowych danych pomiarowych może trwać nawet kilka minut.

20. SYNCHRONIZACJA Z PROGRAMEM mVIDIA EXPLORER

Program mVIDIA pozwala na przesłanie wszystkich przechowywanych informacji do bazy danych zainstalowanej wraz z programem mVIDIA Explorer na komputerze stacjonarnym.

Proces synchronizacji polega na ciągłej weryfkacji zawartości baz danych obu programów. W przypadku wykrycia różnic, uruchamiany jest proces transmisji danych.

Zastosowane mechanizmy kontroli transmisji pozwalają na współistnienie wielu baz danych mobilnych oraz stacjonarnych.

Synchronizacja odbywa się poprzez łącze WiFi. Oznacza to, że zarówno komputer stacjonarny, jak i urządzenie mobilne muszą zostać podłączone do tej samej sieci. Do tego celu może zostać wykorzystany zewnętrzny router WiFi (patrz rozdz. 20.1) lub punkt dostępowy uruchomiony na urządzeniu mobilnym (patrz rozdz.20.2).

W celu uruchomienia synchronizacji, w oknie g aplikacji mVIDIA, w z USTAWIENIA wybierz p Synchronizacja

serwisu głównym zakładce polecenie

20.1. Konfiguracja połączenia przy użyciu istniejącej sieci WiFi (zewnętrzny router)

Połącz urządzenie przenośne z wybraną siecią WiFi i uruchom program mVIDIA.

	(i	
MENU		
Trasa pomiarowa		
Pomiar niezależny		
Detektor nieszczelności		
_{Ka} WiFi hotspot		
Czy uruchomić punk	kt dostępowy dla	
urządzen pomiarow	ych?	
Nie	ych? _{Tak}	
Nie	ych? Tak	
ui ządzen pomiarow Nie	Ych? Tak	
Nie	Tak	
Nie	Tak	
Nie	Tak	

Podczas uruchamiania programu <u>nie</u> <u>włączaj</u> punktu dostępowego dla urządzeń pomiarowych.

lstawienia programu		2
Wybierz interfejs sieciowy używany do synchronizacji danych	Software Loopback Interface 1 (127.0.0.1)	
	Intel(R) Centrino(R) Advanced-N 6235 (192.168.43.80)	
	OK Anul	uj

Połącz komputer, na którym zainstalowany został program mVIDIA Explorer z siecią WiFi, z którą połączyło się urządzenie przenośne.

Na komputerze klasy PC uruchom program mVIDIA Explorer. Z menu *Plik* wybierz opcję *Konfiguracja programu*.

Na liście dostępnych kart sieciowych zaznacz kartę sieci bezprzewodowej.

W polu *Adres serwera synchronizacji* wpisz adres sieciowy przydzielony komputerowi PC przez router WiFi.

Ostatnio używany adres sieciowy serwera jest zapamiętywany.

Wybierz interfejs sieciowy używany do synchronizacji danych	Software Loopback Interface 1 (127.0.0.1)
	Intel(R) Centrino(R) Advanced-N 6235 (192.168.43.80)

W programie mVIDIA Explorer zamknij okno konfiguracji sieci wybierając przycisk **OK**.

Z menu **Synchronizacja** wybierz polecenie **Uruchom synchronizację.**

synchronizacji Serwer programu **mVIDIA** Explorer może być uruchomiony przez cały czas korzystania z programu. W takim przypadku, znalezieniu po sie urządzenia mobilnego w zasięgu tej sieci WiFi natychmiast rozpoczyna się proces synchronizacji baz danych.

W aplikacji mobilnej wybierz przycisk Włącz.

mVIDIA
Ustawienia połączenie: Wył.
Adres serwera sychronizacji:
192.168.43.80
Łaczenie
Wyłącz

Serwis synchronizacji programu mVIDIA informuje o próbie nawiązania połączenia z serwerem synchronizacji.

mVIDIA	
Ustawienia połączenie:	Wył.
Adres serwera sychronizacji 192.168.43.80	
Serw	er niedostępny
_	wrącz

Jeśli wystąpią problemy z połączeniem, lub serwer synchronizacji na komputerze PC nie zdążył się uruchomić, serwis synchronizacji programu mVIDIA zgłosi błąd.

W takim przypadku należy ponowić próbę nawiązania połączenia. Jeśli problem występuje nadal, należy upewnić się, że żadne z urządzeń nie połączyło się z inną, dostępną siecią WiFi.

Jstawienia połączenie:	Wył.		
Adres serwera sychronizacji: 192.168.43.80			

Po nawiązaniu połączenia, serwis synchronizacji pozostaje uruchomiony, niezależnie od działania aplikacji mVIDIA oraz przejścia telefonu w tryb uśpienia (wyłączenie ekranu samoczynne lub przyciskiem).

W czasie aktywnego połączenia z serwerem synchronizacji nie ma możliwości korzystania z urządzenia pomiarowego.

Serwis synchronizacji: Otwarto połączenie mVIDIA				
Ustawienia połączenie: Wył.				
Adres serwera sychronizacji: _192.168.43.80				
Otwarto połączenie				
Wyłącz				

W celu wyłączenia serwisu synchronizacji na urządzeniu mobilnym, w programie mVIDIA należy przejść do okna synchronizacji i wybrać przycisk wyłącz.

15:1	2 ^{WTOREK} 북
(((°	Bluetooth GPS Data Auto
mVIDIA	mVIDIA: Serwis synchronizacji 15:14 Otwarto połączenie
()•	Aktywny tethering lub punkt dostęp Dotknij, aby skonfigurować.

Jeśli serwis synchronizacji działa na urządzeniu mobilnym przy wyłączonym programie mVIDIA, należy rozwinąć pasek stanu urządzenia, wskazać aplikację *mVIDIA: Serwis synchronizacji* i po uruchomieniu okna synchronizacji wyłączyć serwis. Zarówno program mVIDIA, jak i mVIDIA Explorer zapamiętują konfigurację połączenia WiFi. Jeśli adresy IP urządzeń synchronizujących dane nie zmienią się, proces konfiguracji połączenia będzie musiał być przeprowadzony tylko jeden raz.

Routery WiFi urządzeniom posiadającym określony adres MAC za każdym razem próbują przypisać taki sam adres IP. Istnieje również możliwość przypisania konkretnego adresu IP każdemu urządzeniu na podstawie jego unikalnego adresu MAC.

Serwis synchronizacji: Otwarto połączenie mVIDIA
Ustawienia połączenie: wył.
Adres serwera sychronizacji: 192.168.43.80
Otwarto połączenie
Wyłącz

Jeśli punkt dostępowy dla urządzeń pomiarowych był włączony, możesz włączyć sieć WiFi korzystając z ustawień urządzenia mobilnego lub konfigurując połączenie serwisu synchronizacyjnego ręcznie.

W tym celu w oknie synchronizacji włącz opcję *Konfiguracja ręczna* przesuwając przełącznik.

AUGUM	mVID	A					
Ustawier	nia połą	czenie:		Wł.			
Wi							
						Zatv	vierdź
Adres sen	wera syc	hronizacj					
192.1	68.127	.104					
-							
			Włącz				
q۱	N e	r	t	y u		i c) p
_	_				_	_	
а	s	d 1	f g	h	j	k	
				120			
仑	z	x	: v	b	n	m	×

Z listy rozwijanej wybierz opcję WiFi, a następnie naciśnij przycisk Zatwierdź. Program mVIDIA uruchomi modem WiFi urządzenia mobilnego, które połączy się z dostępną siecią WiFi.

W przypadku istnienia wielu sieci WiFi, należy dokonać wyboru sieci w ustawieniach urządzenia mobilnego.

20.2. Konfiguracja połączenia przy użyciu punktu dostępowego urządzenia mobilnego

System Android pozwala uruchomić na urządzeniu mobilnym punkt dostępowy WiFi dla innych urządzeń wyposażonych w bezprzewodową kartę sieciową.

W celu konfiguracji punktu dostępowego w oknie synchronizacji włącz opcję *Konfiguracja ręczna* przesuwając przełącznik.

	mVIDIA							
Ustav	vienia po	łączenie	a:		Wł.			
	WiFi							
	WiFi							Ł
Adres	Punkt o	ostępov						
19	2.168.1	27.104						
				Włącz				
q	W	e	4	ty	/ L	1	Ċ	• p
	a s	d	f	g	h	j	k	1
û	z	x	c	v	b	n	m	
?12	23 🌷			Polski	a l			ок

Z listy rozwijanej wybierz opcję *Punkt dostępowy*.

mVIDIA
Ustawienia połączenie: Wł.
Punkt dostępowy
Nazwa:
wifi
Hasło:
Zatwierdź
Wiącz
1 2 3 4 5 6 7 8 9 0
@ # \$ % & * - + ()
=\< ! " ' : ; / ? 🖎
ABC , Polski Dalej

Podaj nazwę punktu dostępowego oraz wpisz hasło zabezpieczające.

Niektóre wersje systemu operacyjnego Windows wymagają podania hasła zawierającego minimum 8 znaków.

Jstawienia programu		×
Wybierz interfejs sieciowy używany do synchronizacji danych	Software Loopback Interface 1 (127.0.0.1)	
	Intel(R) Centrino(R) Advanced-N 6235 (192.168.43.80)	
	OK Anul	uj

Uruchomienie punktu dostępowego sygnalizuje symbol 🛜 umieszczony na pasku stanu urządzenia mobilnego.

Połącz komputer, na którym zainstalowany został program mVIDIA Explorer z utworzoną siecią WiFi. Po nawiązaniu połączenia uruchom program mVIDIA Explorer i postępuj zgodnie z instrukcją zawartą w rozdziale 20.1.

21. OPERACJE NA BAZIE DANYCH

Oprogramowanie pozwala na zapisanie całej bazy danych w pliku w celu utworzenia jej kopii zapasowej lub przeniesienia na inne urządzenie mobilne.

Obsługa bazy danych możliwa jest po przejściu w głównym oknie aplikacji do zakładki **USTAWIENIA** i wybieraniu z listy pozycji **BAZA DANYCH**.

21.1. Eksport bazy danych do pliku

W oknie USTAWIENIA BAZY DANYCH w polu Miejsce przechowywania danych pomiarowych wskaż rodzaj pamięci, w której chcesz zapisać bazę danych. Następnie, wybierz polecenie EKSPORT DO PLIKU.

mytota /S	torage	/sdca	rd0/m	VIDIA	
[]					
		Zatwi	ierdź		

We wbudowanym eksploratorze plików wskaż lokalizację pliku bazy danych w pamięci urządzenia. Nazwa pliku zostanie wygenerowana automatycznie na podstawie czasu wykonania operacji eksportu bazy.

W zależności od rozmiarów bazy danych czas jej zapisu może trwać nawet kilkanaście minut.

W czasie procesu zapisu wyświetlana jest informacja **Eksport do pliku Proszę czekać...**

21.2. Import bazy danych z pliku

W celu zaimportowania bazy danych z pliku, w oknie USTAWIENIA BAZY DANYCH wybierz polecenie IMPORT Z PLIKU.

/storage/sdcard0/mVIDIA
[]
mVIDIA_21112013_173411.dmp
mVIDIA_23102013_195230.dmp
mVIDIA_23102013_195415.dmp
mVIDIA_23102013_195626.dmp

We wbudowanym eksploratorze plików wybierz plik zawierający kopię bazy danych do wczytania.

ustawienia bazy danych
Miejsce przechowywania danych pomiarowych:
Pamięć zewnętrzna (wbudowana)
Eksport/import bazy danych:
Eksportuj do pliku
Importuj z pliku
Proszę czekać
21%

W zależności od rozmiarów bazy danych czas jej zapisu może trwać nawet kilkanaście minut.

W czasie procesu zapisu wyświetlana jest informacja **Import z pliku Proszę** czekać...

22. KONFIGURACJA PUNKTU DOSTĘPOWEGO

- mVIDIA	()
MENU	USTAWIENIA
Urządzenia pomiarow	/e
Czujniki	
Baza danych	
Synchronizacja	
Punkt dostępowy	

Dla urządzeń WiViD pracujących w pobliżu jako odrębne systemy pomiarowe (współpraca z innymi urządzeniami mobilnymi), konieczna zmiana punktu iest nazwy dostępowego dla każdego z nich. Możesz zmienić wybierając ia polecenie Punkt dostepowy w zakładce ustawień.

www mVIDIA	í
Ustawienia punktu dostępowego	
SSID:	
Cz_WIVID	
Ba	
Sy Przywróć domyślne Anuluj Zastos	suj
Punkt dostępowy	
q w e r t y u i c	p p
asdfghjk	1
企 z x c v b n m	×
?123 ,	Gotowe

W oknie Ustawienia punktu dostępowego aplikacji wpisz jego nazwę (SSID) oraz hasło.

Każde nowe urządzenie WiViD ma przypisaną tą samą, domyślną nazwę sieci oraz hasło. W celu nawiązania połączenia z nim, program mVIDIA musi korzystać z ustawień domyślnych. Możesz przywrócić je wybierając polecenie *Przywróć domyślne*.

23. AKTUALIZACJA APLIKACJI

Podłącz urządzenie przenośne z Internetem (poprzez sieć Wi-Fi lub GSM).

Podczas uruchamiania programu nie włączaj punktu dostępowego dla urządzeń pomiarowych.

W oknie głównym aplikacji wybierz przycisk **O programie**.

Jeżeli dostępna jest aktualizacją, widoczny będzie przycisk **Pobierz aktualizację.** Po zapisaniu pliku w pamięci telefonu instalacja rozpocznie się automatycznie.